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V " ABSTRACT

"- 4 3>the homogenization of a Stefan problem (i.e., heat

conduction with change of phase) when the structure is c-periodic and

,we provez that the constitutive laws of the limit medium do not depend

upon the boundary conditions and are those of an anisotropically heat con-

ducting medium which undergoes a change of phase at each temperature of

change of phase of the original substances.
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SIGN I-ICANCE AND EXPLANATION

We study the homogenization of a periodically distributed mixture of

two (or more) pure media which can undergo one or more changes of phase.

The problem is to find the properties of the idealized homogeneous medium

(if it exists) whose behaviour the original mixture approaches when the

periodic mesh gets finer and finer.

It is proved under quite general boundary conditions, and under the

restriction that for each original medium the heat conductivity is inde-

pendent of the temperature, that such a limit medium exist and that it has

the following properties: its heat diffusion is homogeneous but non-

isotropic in general, its specific heat is an average of the specific

heats of the original media, and it does undergo change of phase at all

the temperatures of change of phase of the original media. This last fact

is in strong agreement with everyday experience, as witnessed for example

by the freezing of ice cream.
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HOW TO HOMOGENIZE A XONLINEAR DIFFUSION EQUATION

(e.g. STEFAN'S PROBLEM)

Alain Damlamian

1. Introduction

For many physical studies of composite materials, one is more interested in a global

or "macroscopic" behavior of a composite medium rather than in a detailed "microscopic"

one. To put it is a different way, and for reasons that can also come from numerical

analysis when discretization is considered, one is interested in finding the relevant

properties (i.e. the constitutive laws or physical parameters) for an idealized homo-

geneous medium which would have the limit behavior of the composite material when the

size of the periodic mesh goes to zero.

Finding the relevant parameters of this idealized limit (when it exists) is the

origin and one of the main contributions of homogenization theory. Since this is not

intended to be an introduction let alone a survey,of homogenization theory, the reader

is referred to Bensoussan-Lions-Papanicolaou [1] for a complete set of references.

The model problem we are looking at here is the problem of homogenization of a

non linear heat equation for a composite material consisting of a periodic mixture of

media which can undergo changes of phase, (Stefan's problem). One can also apply the

present results to electromagnetic composite materials (see Bossavit-Damlamian [1].

The plan is as follows

2. The model E-problem; weak formulation.

3. Estimates for the E-problem.

4. A short review of elliptic homogenization.

5. The limit problem and its constitutive laws.

Conclusions

The author is very grateful to Professor J. M. Lasry for raising this interesting question,

to Professor C. Tartar and F. Murat for their helpful suggestions.
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2. The Modal c-problem.

In short, the problem we are looking at is the following:

Let :2 be a given bounded domain (in mN usually N = 3) with smooth boundary

We restrict ourselves to two media M1  and M2  Their distribution in .: is given

according to a periodic structure of mesh size E proportional to a basic period Y of

size 1. The basic period Y is partitioned into two smooth subsets Y1 and Y2 corre-

sponding to each medium M1 and M2 , so that correspondingly 2 is partitioned into

_, I'!and ,2,E The boundary between Y1 and Y2 is denoted by Z , and its image

in is 7E which is supposed to be rigid and perfectly heat conducting. As for

s--. it is split into F and F2,, corresponding to each medium.

It is assumed as customary for a Stefan problem that the variations in volume are

negligeable.

Time will be restricted to an interval [0,T] and it will be shown that the result

is independent of T

In Q = 10,T[ 2 , , each change of phase for each medium will, in the strong formula-

tion, generate a free boundary separating the phases. With our convention that there is

at most one change of phase for each medium, two boundaries S. (i = 1,2) (not

necessarily connected) are generated.

Before writing the strong formulation, we introduce some notations: for each medium

i (=1,2) i (v), Oi, bi, ki , denote the specific heat (a function of the temperature v

the temperature of change of phase, the latent heat, the heat conductivity (which is

assumed to be strictly positive independent of the temperature v , a limitation for our

final result but which has not been lifted so far).

We can now write the strong formulation of th, ,r,.h!',,. ',n, ]',,,k; t,,r v (t,x)

(temperature) and the two surfaces Si, E sati-fT.'

in (0,T) d i .
\  
S vi,

(2.1)
ai(V ) 

2V- div(k i V v )

where f is an internal heatir,, ,

-2-



on (0,T) . continuity of v
iL

(2.2) . continuity of heat flux

(k1 7v n= k2 -. V n

on S v,

(2.3) b. cos'n,t) - V hi  cos(n,j)]S = 0
l~ J

where n is the unit normal to S. in space time, [ ] indicates the

jump across S i along n.This is the classical Stefan condition on the

free bounCrary.

Initial condition: vE
(0 ) 

given in Q together with the initial

(2.4) boundaries S. (0); They are assumed to be compatiLle (v(0)

on s. (0) .

As for the lateral boundary conditions, it is known in the linear homogenization theory

that provided they are of variational form, they do not interfere with the limiting

process. To be complete we shall take them linear inhomogenous of mixed type. We

assume a smooth partition of r in F
+  

and F- (F- with non empty interior) and

require the following:

(2.5) v E (t,x) = g-(t,x) on F-

av v + +
(2.6) k 2v + P = g (t,x) on Fn F.

i 3ni

here P is a non-negative smooth function measuring the permeability of the boundary
+

r
+  

to heat flow, g- and g are given smooth functions. It is also assumed that

the boundary data g-,g+ agrees with the initial data v0 at t = 0. It turns out

that conditions (2.2) and (2.3) are Rankine-Hugoniot type conditions for the energy

balance equation taken in the distribution sense on Q . In order to write this equation

(which gives a weak formulation) we need some notations:

For each i , let Yi denote the maximal monotone graph defined (up to a constant)

by

(2.7 y(v) 1v s)ds + b H(v - 0i)

-3-



(H is the Heaveside function). This represents the enthalpy as a function of tl.c

temperature.

We also put:

(2.8) Y(y,v) = fi(v) for y in Y

(2.9) k(y) = k. for y in Y.1 1

Then (2.1), (2.2), (2.3) reduce to

(2.10) u - div(k(-) V V ) = f in ' Q)5te

(2.11) uC(t,x) y Y( x , vE(t,x))£

The initial conditions (2.4) , can be expressed in terms of u alone as an

initial condition

(2.12) u E(0) = u0

which we can assume independent of c

For the lateral boundary conditions, we introduce an auxiliary problem, where the

time t is a mere parameter:

Let g (t,x) be the solution of

- div(k ( ) VgE(t)) = 0 in Q

gt(t) g-(t) on F"

(2.13)x j ()+
k( { ) t

t- + P gt(t) = g+(t) on F +

Clearly gE is bounded in H (0) uniformly in c . Now (2.1)-(2.6) has the

following weak formulation

(2.14) f - u + fT ae(vE - gE, P) f f fo + f C(O)u 0
Q 0 Q 0

for all in C (Q), P(T) = 0 and o = 0 on (O,T) x 1-

(2.15) v - g = 0 on (0,T) x r

In (2.14) a is the bilinear Dirichlet form given by

(2.16) aE(w,') = f k( ) (Vw.V) + f-P w 1 .
;70 +

The smoothness assumptions made for r F allow for (2.14) to take € in a larqer

class namely P w 1'2(0,T;V) where V is the variational space: { P H ( /
- 

= 0).

(See Damlamian [1] for a detailed study).

-4-
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(2.17) Definition: (u ,v ) is a weak solution for problem (2.1)-(2.6) if and only

if they satisfy (2.11), (2.14), (2.15).

(2.18) Theorem (see Damlamian (1] and [2]).

Under the hypothesis that the a. 's are bounded above and below away from zero,1

there exists a unique solution (u ,v ) for problems (2.11), (2.14), (2.15) which

satisfies:
WI1,22

U E W 1,(0,T;V*) n L (O,T;L 2())
C WI1,2 0,L2()

v -g w (OTL (Sj)) n L (O,T;V).

Instead of giving a detailed proof we will only give the idea of how to obtain

uniform estimates in the following paragraph.
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3. The uniform estimates.

(3.1) Proposition. The solutions (u,v) > 0 satisfy the following:

u 
1 

i o n e n W I , 2 ; L 2,
u is bounded in 1(T ;V*) LC(0T ;L (2)) uniformly in 0

v- g is bounded in 
W

I 2 (OT;L 2)) L'(OT,V) uniformly in 0

Proof: To obtain these estimates, it is enough to show them in the case of smooth

Then u
E 

and v
c 

are smooth enough to replace (2.14) by

(3.2) f - ;'u f + T a£(v£ g£,€) = f,; + f (0)u0 - f (T)u'(T)
Q0 Q 2 CQ

for all p in WI'2 (OT;V).

Then taking = [A I -u (AF' beinq the operator associated to aE on V) one gets:

(3.3) iu (t)1 2,V. + ft f vCu£ < iu 11 + f u'gC +ft Iu vII Iil ,V

0 Q 0 Er (Ot) x 0 V* -,V*

where 11V11 is the dual norm of (a£ (, on V , the latter being uniformly

equivalent to the standard norm on V .

=[ 1du£
Also taking P = [Ac]

- I 
-d one gets

34) CIV£(t) 122 , 2_t2

(3.4) c() 0, I ,V f__ C2 (a constant which depends upon f,V 0 ,g 1g... ).

From (3.3) and (3.4) one gets (because v u
E 

can be assumed non negative), that vc

is bounded in L'(0,T;L (C))

C 1,2
u in W (0,T;V*)

Then one takes € = d -gC) to get
dt

(3.5) c3 ft dv C dt + a£(v-g£,v£-g£) < c4 (a constant which depends upon
0 L(C)

f#9+,9-Vo ... )

From (3.5) one infers that v£ stays bounded in W
1
'
2
(0,T;L

2
( )) and

v -g stays bounded in L (O,T;v).

A detailed proof of the above can be found in A. Damlamian [1] and [2], and in much

simpler cases in Brezis [4] and Lions [1].

-6-
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It is worth noticing that given the estimates of (3.1) (even not uniform in

equation (2.14) can be replaced by (3.2) or even by

(3.6) t a (vg,¢) f f; + f '(u0 - u,(t)
0

for all in V (independent of t ).

This remark (cf. Damlamian [1)) shows that (u v
-
) is the solution of a simpler varia-

tional inequality (of the type studied by G. Duvaut [1l).

Another way of looking at (3.6) is the following, since the operator does not depend

upon time

a (VE(t),¢) = f (F(t) + u0-U' (t))

(3.7)
V1 (t) = 0 on F

for all t (0,T), all ; in V , where

V'(t,x) ft (vc(s,x) - g (s,x))ds
0

F(t,x) = ft f(s,x)ds.

0

-7-
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4. A short review of elliptic homogenization

The purpose of this paragraph is to show hor elliptic homogenization works an. ow

it can be applied in the present problem. See Bensoussan-Lions-Papanicolaou [1) (Also

L. Tartar [1]). With the same notations as above, we consider the operator

A = -div(k ( )V) on . Let w
E 

be the variational solution of£

A w= f
t  

in 0

(4.1) w =g
-  

on r
x w £ + F+

k( )- + p w = g on r
E:~ 3n

that is

(4.2) a E(w ,) = f + f+ g+
0 1'

for all p in V , w =g- on -

o 2
We assume that f£ converges to fO weakly in L (Q).

(4.3) Proposition: As e goes to zero, wC converges weakly in HI(2) to the
0

solution w of the following problem

(4.4) a (w 
0
,P) f f

0  
+ f g +0 +'

for all p in V , w = g on r- , where a
0  

is the bilinear form given by

a°Cwj) = k q 7- 5 + P w
0 j,£ ' 3 k F

with constant coefficients q.,£ given by

(4.5) q I f k(y) V (XZ y,)7(Xj - y)
m y

where Xi is the solution (defined uniquely up to a constant) of

(4.6) -div(k(y) V X
j
) = -div(k(y)e ), x

j 
periodic in Y

3

e. is the j'th unit vector in RN' y. being the coordinate on e,

Proof: It is clear that wE being bounded in H (2) (by coerciveness of a with the

Dirichlet boundary condition). So we can assume (via uniqueness of the solution for the

E: 0
limit problem-to-be) that w E w . Then by a result of Tartar Il], one can see that
kx aw 2 2w 0

M ax converges weakly in L 2 (Q) (hence in L
2 

(2)) to L q. 1-- (qj given
E xZbc j; ) x. j.

by (4.5), (4.6)), so that (4.2) goes to the limit to (4.4), which is the weak formulation

of

-8-



00 0

W0 = g in 7

(4.7) iw
0  

th 0 cnra+ d a F+
3y 0 + p

w =g o

A
aA 0

Here - is the conormal derivative for A which one should notice is not

diagonal, but still symmetric, and with constant coefficients
0 =a2

Here we have also used the compactness of the trace operator from H (.0) into L2).

-9-
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5. The limit problem and its constitutive laws.

Making use of the results of paragraph 4, one sees that gi:(t) converges weakly in
1

H ( ) to the solution g (t) of

A0 
g (t) = 0

g (t) g(t) on '

(5.1) gO (t) gO + +
a) p 9(t) = g+ on

l0
A

Also, by the estimates of (3.1) one can extract a sequence of values of going

to zero such that

C u
0  

1 in W (OT,V*) n L (OT;LU ())

VE~g _ - v-g
0  

in W
1
'
2
(0,T,L

2
( ) I L'(OT,V)

Hence u converges strongly in C([O,T];V*) and for all t - (0,T], u (t) converges

weakly to u
0 
(t) in L

2 
(Q).

Consequently we can apply the result of (4.3) to (3.7) so that Vc(t) which

obviously converges to V (t) = ft (v(s) - g0(s))ds satisfies:
0

0 0 0a (vO(t),V ) = f (F(t) + u0 - uO (t))
(5.2)00 V 0(t) - 0 on F- .

Using the equivalence with the weak formulation of type (2.14) we get

v - g = 0 on (0,T) x F-
(5.3) f I U ~ u

0 
+ jt a (v

0  
- g

0
o, = f f + f u0  (0)

Q 0 Q 0

for all p in W'2 (OT;V) P(T) = 1I(OT)xr- 
= 0

We now turn to (2.11), that is

U :(t,X) E Y( v , (tox)) .

Assuming e is chosen so that gE converges to g
0 

weakly in H1(Q), then v C

converges to v
0 

weakly in W
1
'
2
(0,TiL 2(0) n Lf (OT;H 1()) so that the convergence is

(*)

The limit problem having a unique solution, it will be clear by the end of the proof
that the whole sequence converges.

~-10-



uniform in C([O,T], L
2

(i.)) for example.

Let c be a real number, different from ., put w (x) = ( x ,c). Clearl w
c c

2
converges weakly in L to a constant

1
(5.4) "(c) mes(Y) j y(y,c)dy

Y

Using the monotonicity of f( ,) we have

(t,x) = (u (t,x) - wL(x)) (v(t,x) - c) 0 a.e.

c

Hence, using the proper convergences, we get that u(t,x) converges weakly in the

0 - 0 csense of measures on it for all t to (u - ((c))(v - c) which has to be non negative.

0
Hence u (t,x) belongs to the unique maximal extension of the monotone graph y , which

we denote by y . Consequently (2.11) goes to

0 -0
(5.5) u (t,x) (v (t,x)) a.e. in x , for all t

-11-



6. Conclusion

we conclude that the limit equations correspond to the weak formulation of the

following strong problem:

du A0
+ v = f

u(t,x) E Y(v(t,x))

Ku. 1) UN0,X) = u 0(6)

v(t,x) = g (t,x) x E F

-V (t,x) + p V(t,x) = g+(t,x) X C P+

0
A

or to look at it from the Stefan problem point of view, a non isotropic Stefan problem.

One can notice that we recover the heat diffusion operator of the linear case,

that is a homogeneous but anisotropic heat diffusion.

One also gets an "averaging" phenomenon for the graphs y 's over Y , which is1

the only averaging consistent with the fact that both yi's are defined up to an additive

constant and so is y . Both temperatures of change of phases appear for discontinuities

of y , which is in agreement with daily experience (any other averaging of Y and Y2

would have yielded no discontinuity in the average, hence no change of phase). It is

easy to see that the specific heat and latent heat of the limit medium are averages over

Y of the corresponding terms.

Finally, on the theoretical side of things, it is of interest to realize that the

isotropic diffusion laws are not stable under homogenization of Stefan problems, but

anisotropic ones are stable.

It remains to prove that the above can be extended to the case of temperature--

dependent heat conductivity for each medium, which is already more complicated but solved

in the non Stefan case (see Tartar (1).

--
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